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Synopsis 

A numerical simulation of entry flows in an annular die has been undertaken for Newtonian 
and power-law fluids as well as viscoelastic fluids that exhibit normal stresses in shear flow. 
Experimentally measured normal stress and viscosity data are included in a simple rheological 
model. The influence of inertia and viscoelasticity are examined separately as functions of the 
Reynolds (Re) and Weissenberg (Ws) numbers. It is found that inertia decreases the size of 
the comer vortices in the reservoir comers which tend to increase rapidly with elasticity level in 
the absence of inertia. The combined effect of inertia and elastic forces is to first increase the 
vortex size followed by a decrease at higher Re numbers. The numerical simulations are in 
qualitative agreement with experimental studies available in the literature. 

INTRODUCTION 

The flow of polymer solutions and melts through processing equipment is of 
considerable interest in the polymer processing industry. These fluids exhibit 
unusual behavior when flowing in nontrivial geometries, such as abrupt 
contractions. Experimental investigations abound in the literature for a variety 
of polymer solutions and melts and have been reviewed quite recently.' On the 
other hand, the corresponding numerical simulations have had an equal 
growth and there exist numerous reports that deal with the prediction of flow 
patterns in contractions. Again, a thorough and systematic literature survey 
can be found in the review by White et a1.l 

The major difficulty for the theoretical, and hence, numerical analysis is the 
lack of well-accepted constitutive equations that can adequately describe the 
flow of viscoelastic materials. While the case for purely viscous (inelastic) 
materials has been quite adequately handled by the generalized Newtonian 
fluid, the case of viscoelasticity still remains an open subject. To date, i t  seems 
that the only successful simulations for flow through abrupt contractions and 
prediction of extrudate swell for polymer solutions and melts have been based 
on a rather heuristic approach that assumes the flow to be locally steady-shear 
(viscometric approximation approach).2, This method uses the minimum 
amount of rheological information (i.e., shear viscosity and normal stress data 
which can be obtained experimentally) to a t  least qualitatively simulate 
strong viscoelastic behavior exhibited by several test fluids. 

Almost all works, both experimental and theoretical, that have been per- 
formed on contractions deal with the entry flow from a reservoir into a planar 
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(slit) or tubular (capillary) die.4 In many cases, the nonlinearities caused 
either by inertia terms (non-zero Reynolds number flows) or by viscoelastic 
terms (non-zero Weissenberg number flows) have been separated for a better 
understanding of the effects. Therefore, a variety of simulations exists that 
deal with: 

1. Creeping flow of Newtonian and generalized Newtonian (shear- thinning) 

2. Noncreeping flow of Newtonian and generalized Newtonian (shear-thin- 

3. Creeping flow of viscoelastic fluids (Re = 0, Ws # 0)2,3,'0 
4. Noncreeping flow of viscoelastic fluids (Re # 0, Ws # 0)"*12 

fluids (Re = 0, Ws = 0)5-7 

ning) fluids (Re # 0, Ws = O)*,' 

The planar and tubular entry flows are of importance in various industrial 
applications, such as synthetic fiber spinning and sheet and rod extrusion of 
plastic products. However, the processing of viscoelastic fluids in geometries 
other than circular ducts has taken on added significance. One such geometry 
is the annulus. Annular entry flows are encountered in the extrusion of plastic 
tubes, in wire coating, in film blowing, and in annular rheometers. 

Two experimental investigations have been performed on the entry flow of 
fully characterized polymer solutions in annular dies. One deals with entry 
flow in a straight annulus,13 while the other is concerned with the flow 
patterns in an abrupt 2:l concentric annular c~ntraction.'~ Since no numerical 
attempt has been made to date to analyze such a flow field, it is the purpose 
of this article to perform the corresponding simulations and investigate the 
roles that inertia and viscoelasticity play in the flow of certain polymer 
solutions in such geometries. The results are compared with experimental 
findings for two test fluids for which steady-shear data are available for the 
viscosity and the normal stresses. 

MATHEMATICAL MODELING 

The isothermal, incompressible, laminar flow of polymer solutions and melts 
can be fully described by the equations of conservation of mass and momen- 
tum (including the inertia terms): 

where v is the velocity vector, p is the density, p is the pressure, and T is the 
extra stress tensor. 

For axisymmetric flows, such as these encountered in tubular and annular 
geometries, a cylindrical coordinate system (r-z-B) may be used and the 
three-dimensional problem is reduced to two dimensions, namely r and z 
(assuming no variations in the &direction). The conservation equations are 
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then written as1? 

avr vr avz 
- + - + - = o  
ar r az (3) 

The extra stress tensor r is, in general, given by some constitutive equation, 
which complies with the rules of tensorial invariance and objectivity of the 
stresses to the frame of reference.16 However, due to the lack of such a widely 
accepted constitutive equation that can adequately describe the flow of 
polymer solutions and melts, we will use instead the viscometric approxima- 
tion theory (VAT),3 that basically corrects the stresses of a generalized 
Newtonian fluid to account for normal stress measurements in shear flows. 
For axisymmetric geometries, the components of T are then given by:3 

where 17 is the apparent viscosity and \k, and g2 the first and second normal 
stress coefficients, respectively. These are, in general, functions of the magni- 
tude IpI of the rate-of-strain tensor p = v v  + vvT, given by: 

where 

Equations (6a-d) give rise to the following viscometric functions: 

Trz = VYrz  ( 9 4  

where rrz is the shear stress and N,, N, the first and second normal stress 
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Fig. 1. Schematic diagram and notation for a 2 : 1 annular entry flow geometry. 

differences, respectively. Note that for a purely viscous (inelastic) fluid, 
\IIl = q, = 0 (or Nl = N, = 0), and Eqs. (6a-d) reduce to these for the gener- 
alized Newtonian fluid. Furthermore, if q = constant, we obtain the equations 
for a Newtonian fluid. 

The viscometric functions obtained from steady-shear experiments for poly- 
mer solutions or melts are usually related to the shear rate p by the 
power-law model:14 

r = myn (10) 

Since it is well known that the second normal stress difference N, is much 

In an annular geometry and referring to Figure 1, it is appropriate to define 
smaller than N,, 17,18 we have used in what follows N, = 0 (\II, = 0). 

a hydraulic radius rH: 

where rl and r, are the inner and outer radii of the downstream annulus, 
respectively. Then, for a fully developed flow in the downstream annulus, one 
obtains an equivalent hydraulic shear stress 7 H :  

dP 
‘ H =  (&) ‘H 
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where (dp/dz) ,  is the pressure gradient in the annulus; the equivalent 
hydraulic shear rate qH for power-law fluids is given by: 

The relevant dimensionless groups for power-law fluids obeying eqs. (10) 
and (11) are then defined as follows:14 
Reynolds number, 

3-n n 2-n inertia forces 

m[(con + c l ) /n ]  viscous forces 
(15) - - rHvo P 

Re = 

Weissenberg number, 

elastic forces 
viscous forces 

b - n  

Elasticity number, 

Ws elastic forces 
Re inertia forces 

( = - =  

In the above, v, is the average velocity in the downstream annulus, readily 
obtained from the flow rate Q according to: 

Q = rvo(r; - r:) (18) 

The values of the geometric parameters co and c1 depend on the ratio 

The vortex detachment length Lv, is represented in dimensionless form by: 
K = rl/r2 and are given by Kozicki and Tiu.lg 

L V  x = - -  

4 R H  

where R ,  is the hydraulic radius of the upstream annulus (RH = 

The overall pressure drop AP in the system can be used to evaluate the 
(Rra - rl)/2)* 

entrance correction nen dehed  by: 

AP - (APr, + AP,) 
nen = 

2% 

where A Pr, is the pressure drop obtained for fully developed annular flow in 
the reservoir, APo the corresponding value obtained for the die and T~ the 
hydraulic shear stress at  the die given by Eq. (13). 
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For the mathematical analysis, a set of boundary conditions has to be 
employed. Referring to Figure 1, we have: 

along AB, CD, DE, EF, no-slip conditions: u, = u, = 0 
along FA and CB: u, = u,(r ) ,u ,  = 0 

Therefore, along the entry and the exit planes, we prescribe the corresponding 
fully developed velocity profiles, that have to be obtained numerically for the 
case of a generalized Newtonian fluid (e.g., power-law fluid).20 Note that only 
for Newtonian fluids can the profiles be obtained ana1yti~ally.l~ A standard 
Newton-Raphson method has been used for the integration of the ordinary 
differential equation for a fully developed flow in an annulus to provide the 
corresponding entry and exit velocity profiles for a given flow rate. 

Method of Solution 

The above conservation and constitutive Eqs. (3)-(6) along with the ap- 
propriate boundary conditions (see Fig. 1) are solved by a stan- 
dard Galerkin/finite-element method (G/FEM). The primary variables 
are the velocities and pressure (u-w-p formulation). Streamlines are obtained 
a posteriori by solving the Poisson equation for the stream function. The 
nonlinear system of equations is solved using the MACVIP finite-element 
program2' that  employs a frontal solver and uses a direct substitution itera- 
tive scheme (Picard method). The solution process starts from the Newtonian 
field (Stokes problem, Re = 0, Ws = 0), which is used to obtain a first 
approximation for the velocities, velocity gradients, and stresses. The inertia 
terms and updated viscosity enter in the element (stiffness) matrix which is 
now nonsymmetric (Re # 0), while the elastic terms involving \k, and \k2 are 
treated as effective body forces and enter in the load vector (Ws # 0). A 
continuation scheme is used for increasing values of Re and Ws, in which the 
initial estimate is the solution for the previous set of Re and Ws numbers 
(zero-order continuation). More details about the method have been given 
else~here.~,  22 

TEST FLUID PROPERTIES 

In this study, two test fluids are considered, for which experimental data 
are available for shear and normal stresses over a wide range of shear 
 rate^.'^.^^ 

The first test fluid FM1 consists of 0.60% Methocel 90-HG (hydroxypropyl 
methyl cellulose) in water ( p  = 1 g/cm3) and exhibited no measurable elastic 
properties in steady-shear experiments. The shear stress data give rise to the 
following power-law relationship: 

7 = 0.196q0.862 (Pa) (214 

Nl = 0 (Pa) (21b) 

The second test fluid, FS8, consists of 1.25% Separan MG500 (partially 
hydrolyzed polyacrylamide) in water ( p  = 1 g/cm3). The shear stress is given 
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1’  
as 

- 

- 

R e 4  - 
ws=o 

01 -0.0011 
I I I 

by: 23 

while the first normal stress difference Nl is given by:23 

Nl = 9.269p0.633 (Pa) for 17.6 < p I 222 s-l (224 

In the above, p = TH, the hydraulic shear rate given by Eq. (14). 

RESULTS AND DISCUSSION 

Viscous Inelastic Fluids 

The numerical simulations were performed first in the absence of viscoelas- 
ticity (Ws = 0) for a Newtonian fluid and the two test fluids FM1 and FS8 in 
an abrupt 2:l concentric annular contraction shown in Figure 1. Tan and Tiu14 
present flow pattern photographs for these two fluids, so a direct comparison 
can be made with the present results. 

All calculations were performed with the finite-element grid shown in 
Figure 2. It consists of 448 triangular elements, 969 nodes (17 nodes across and 
57 nodes along the domain), and 1941 unknown degrees of freedom. The 
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Fig. 2. Finite-element grid for u-w-p formulation (upper half) and streamline pattern for a 
Newtonian fluid with Re = 0, Ws = 0 (lower half). 
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present grid resembles the one used earlier,3 and has a high density of smaller 
elements near the re-entrant corner to better capture the dramatic changes 
that occur in the neighborhood of the stress singularity (corner point). The 
entry and exit lengths have been chosen in such a way, so that the imposition 
of fully developed velocity profiles is justified far from the contraction. 

The Newtonian creeping flow field (Re = 0, Ws = 0) is shown in Figure 2 
(lower half). The streamlines have been obtained by normalizing the stream 
function to take values between 0 (outer wall) and 1 (inner wall) with 
increments of 0.1 in between. A small vortex appears in the reservoir corner 
with an intensity of -0.0011 (or 0.11% of the flow rate) and a dimensionless 
length X, of 0.135. The entrance correction nen was found to be 0.513 (cf., the 
values of 0.45 for capillaries and 0.255 for slits in a 2:l abrupt contraction7). 
The small Newtonian vortex has also been found experimentally in contrac- 
tion 

The influence of inertia on the flow of Newtonian fluids in this particular 
geometry is illustrated in the sequence of flow patterns of Figure 3. Successive 
solutions are obtained by incrementing p (and therefore Re). Identical results 
were obtained by incrementing the flow rate through v,, the average down- 
stream velocity, and keeping p constant (thus incrementing Re). Satisfactory 
convergence was obtained without difficulty up to Re = 1200, provided that 
adequate step sizes in Re were followed (in this case the runs were performed 
at Re = 0, 10, 20, 30, 50, 100, 200, 300, 500, 800, 1O00, 1200, 1300 with each 
solution having as an initial guess the solution of the previous Re run). A limit 
point was reached at 1300, a t  which no convergence could be obtained with 
increasing number of iterations. Note that Tan and Tiu14 also report a highest 
experimental value of Re = 1308. The adequacy of the solution was judged by 
the norm of the error which was always less than 0.01 for the converged cases. 
The radial pressure distribution in fully developed flow at entry was also 
negligible (the error reached 0.25% for Re = 1200), thus indicating the ade- 
quacy of the entry and exit lengths of the domain. 

The results of Figure 3 show some interesting phenomena caused solely by 
inertia. As Re increases, the vortex decreases in size and intensity, in agree- 
ment with other  finding^.^*^*" Around Re = 200, a stationary vortex just 
inside the downstream channel was computed to exist, which increased with 
Re. This vena contracta has also been found computationallyZ5 at Re - 
150-200 in flow through tubular contractions, and experimental evidence also 
exists (see, e.g., Christiansen et al.25). For Re 2 200, the reservoir corner 
vortex was also found to increase in size taking an elongated shape. A t  
Re = 1200, the dimensionless vortex length X, was computed to be 0.21 with 
an intensity of -0.0015 (or 0.15% of the flow rate) while the vena contracta 
accounted for 1.1% of the flow rate. This behavior of the reservoir vortex has 
also been observed by Crochet and Pilate" in flow through a 2:l planar 
abrupt contraction. However, their work does not corroborate the presence of 
a vena contracta, which may be a feature found solely in axisymmetric 
geometries. 

The influence of shear thinning for power-law fluids has been examined in 
the absence of viscoelasticity for fluids FM1 (n = 0.862) and FS8 (n = 0.367, 
only). The convergence limit was found to be reduced with increasing shear 
thinning. The highest Re, values for convergence were Re, = 1100 for n = 

0.862, and Re, = 600 for n = 0.367. 
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Fig. 3. Flow patterns of a Newtonian fluid for different Re number (2 : 1 annular abrupt 
contraction). 

Figure 4 shows the corresponding flow patterns for fluid FM1 (power-law 
fluid with n = 0.862). The results closely resemble those for Newtonian fluids 
as expected, since the value of n is close to 1 (little shear thinning). The flow 
pattern for Re = 6 can be directly compared to the experimentally obtained 
photograph given by Tan and Tiu14 (cf., their Figure 5). The virtual identity 
of the experimental and computational flow patterns clearly demonstrates 
that the entry flow problem for inelastic fluids is solved.24 
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Fig. 4. Flow patterns of a power-law fluid (n = 0.862) for different Re numbers (fluid FM1 in a 
2 : 1 annular abrupt contraction). 

Figure 5 shows the flow patterns for fluid FS8 (power-law fluid with 
n = 0.367) in the absence of viscoelasticity (Ws = 0). The results for Re = 1.33, 
17.4, 53.5, and 159 correspond to the photographs given by Tan and Tiu14 (cf., 
their Figure 4). Clearly, the presence of viscoelasticity in the experiments 
accounts for the difference in the flow behavior. The same features are found 
as before, specifically, a reduction in the size of the reservoir corner vortex and 



INERTIAL INFLUENCES IN ENTRY FLOWS 

I I I 

6 . 0  Re47.4 - 
- 

- 
- 

3 . 0  - 
2 . 0  
1.0 - 
0 . 0  

\ 

- 
- 

I I I I I I I I I I 

637 

L= 

\ 

7.0 
6 . 0  

5 . 0  

4.0  

3 . 0  

2 . 0  
I . o  
0 . 0  I I 1 I I I I I I I 

-12 .0 -10 .0  - 8 . 0  - 6 . 0  - 4 . 0  - 2 . 0  0 . 0  2 . 0  4 . 0  6 . 0  8 . 0  10.0 

7 . 0  

6 . 0  

5 . 0  

4.0 

3.0 
2.0 

1 . o  

\ 

L= 

\ 

L 

0 . 0  

7 . 0  

6 . 0  
5 . 0  
4.0 
3.0 
2 .0  
1 .o  
0.0 

-12 .0 -10 .0  - 8 . 0  - 6 . 0  - 4 . 0  - 2 . 0  0 . 0  2 . 0  4.0  6 . 0  8 . 0  l q . 0  

-12.0-10.0 -8 .0  - 6 . 0  - 4 . 0  - 2 . 0  0.0 2 .0  4 .0  6 . 0  8 . 0  10.0 

Fig. 5. Flow patterns of a power-law fluid (n = 0.367) for different Re numbers (fluid FS8 with 
Ws = 0 in a 2 : 1 annular abrupt contraction). 

the appearance of a vena contracta a t  about Re = 150, that grows with 
increasing Re. 

The pressures from the present runs can be used to find the entrance 
correction nen as given by Eq. (20). The results for Newtonian fluids are 
shown in Figure 6, along with the asymptotic lines for entry flows from an 
infinite reservoir into a capillary and a slit. These lines are obtained for low 
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Fig. 6. Entrance correction vs. Re number (Newtonian fluids) (-.-) capillary ( B  = M); (---) 
annulus ( B  = 2); ( . . .) slit ( B  = 03). The broken lines correspond to the asymptotes obtained for 
low Re numbers (Re 5 100): 

Re numbers (Re I 100) and follow the  equation^:^ 

(slit, p = m) 

(capillary, /? = m) 

nen = 0.0225 Re + 0.407 (23) 

(24) nen = 0.0709 Re + 0.589 

where /3 is the contraction ratio, and Re = pvoD/p for capillaries and Re = 

pv02H/p for slits. The present results for a 2:l annular abrupt contraction 
also exhibit an asymptotic linear dependence with Re at  Re s 200, according 
to the equation: 

(25) (annulus, /3 = 2) nen = 0.0526 Re + 0.513 

The Reynolds number Re for concentric annuli is given by Eq. (15) with 
n = 1, co = 1.0, and c1 = 0.481 ( K  = 0.42). It is evident from Figure 6 that 
deviation from linearity occurs for high Re numbers. 

For power-law fluids, the entrance correction versus Re is shown in Figure 
7. Due to the generalized Reynoldsnumber employed [Eq. (15)], the curves for 
different power-law indices n come much closer together than by using a 
standard Re without taking into account the effect of shear thinning and 
geometry (e.g., the one used by Kim-E et al.'). However, even using a 
generalized Re, it is obvious that the lines have different slopes and intercepts 
for different values of n, as shown in Figure 8. For Re I 200, the correspond- 
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ing equations are: 

( n  = 0.862) nen = 0.051 Re + 0.570 (26) 

( n  = 0.367) nen = 0.043 Re + 0.895 (27) 

For higher values of Re, the above equations give overestimates of the actual 
values. These overestimates increase with increasing Re numbers. 

Viscoelastic Fluids 

The effect of viscoelasticity was examined first in the absence of inertia 
(Re = 0) for the test fluid FS8, obeying the power-law relationships given by 
Eqs. (22a-d). The creeping flow patterns for increasing Ws numbers are shown 
in Figure 9. The reservoir corner vortex increases dramatically with Ws, both 
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Fig. 9. Creeping flow patterns of test fluid FS8 for different Ws numbers (Re = 0). 
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Fig. 10. Flow patterns of test fluid FS8 for different Re and Ws numbers. 

in size and intensity. Similar behavior has also been found in creeping flows of 
viscoelastic fluids through capillaries and ~lits.~.~, lo The intensity increases 
from the essentially Newtonian value of -0.0011 for Ws = 0 to -0.18 for 
Ws = 5. The corresponding values of the dimensionless vortex length Xu are 
0.135 for Ws = 0 and 0.64 for Ws = 5. It is interesting to note that the 
macroscopic Deborah number Ws/X, for these runs obeys the r e l a t i ~ n : ' ~ . ~ ~  

lim ws/xu = 8.0 
Re-0 

within f3%.  For Ws = 5, a limit point was encountered, above which the 
solution diverged. 
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Finally, the combined effect of inertia and viscoelasticity was studied for 
the test fluid FS8. The flow patterns are shown in Figure 10 for increasing Re 
and Ws numbers. Unfortunately, due to convergence problems for Ws > 5, we 
were not able to obtain the flow patterns for exactly the same conditions as 
these shown by Tan and Tiu.14 However, the general trends are clearly 
demonstrated in the present simulations, that is, a t  first there is a vortex 
growth regime as Re and Ws increase, followed by a divergent flow regime 
(bending of the streamlines) and a substantial reduction in the size and 
intensity of the reservoir vortex which now grows from the re-entrant corner 
(Re = 6.8, Ws = 5). The influence then of inertia is to reduce the vortex that 
otherwise would have been much greater (compare with Fig. 9 for Ws = 5). 

The discrepancies between the present flow patterns and the ones found 
experimentally by Tan and Tiu14 for fluid FS8 can be attributed mainly to the 
inadequacy of the viscometric approximation approach used to treat the 
viscoelastic terms and to a lesser extent to the lack of experimental data for 
the full range of shear rates (both a t  very low and a t  very high i, values). As 
explained earlier,3 the viscometric approximation fails to account for elonga- 
tional effects, that apparently play quite an important role in entry flows. 
Experimental data on the elongational viscosity are also lacking for fluid FS8. 
However, we feel that the current approach at  least qualitatively captures the 
dramatic changes caused by the combined effect of inertia and viscoelasticity 
in the entry flow through the annular abrupt contraction. 

CONCLUSIONS 

The behavior of Newtonian, power-law, and viscoelastic fluids in entry flows 
through a 2:l annular abrupt contraction has been simulated numerically 
using the finite-element method. The influence of inertia and viscoelasticity as 
measured by a generalized Reynolds (Re) and Weissenberg (Ws) numbers, 
respectively, has been studied by decoupling these effects. 

Inertia in the absence of viscoelasticity (Ws = 0)  was found to decrease the 
reservoir corner vortex for Re I 200, after which an increase takes place to 
produce a small but elongated vortex. At values of Re - 200, a vena contracta 
appears in the downstream channel, which grows with Re. The pressures were 
used to evaluate the excess pressure losses or entrance correction nen due to 
the contraction. The results showed a linear dependence on Re for Re I 200, 
that depends on the power-law index n. However, the use of a generalized Re 
number that takes into account the effect of shear thinning and geometry, 
brings the results much closer together. A limit point for convergence was 
found a t  Re, = 1300 for Newtonian fluids. The limit point decreases with the 
power-law index n (R, = 600 for n = 0.367). The high values of Re numbers 
reached in the present work are apparently due to a continuation solution 
scheme, a dense finite element grid, and the 2:l contraction ratio which is not 
very severe. 

The effect of viscoelasticity (Ws f 0) was studied by using a simplified 
model based on the viscometric approximation appr~ach .~  In the absence of 
inertia (Re = 0), it was found that the reservoir comer vortex increases 
dramatically with Ws, both in intensity and size, as measured by a dimension- 
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less vortex length X,. However, the ratio Ws/X, was found to equal 8, in 
agreement with experimental ev iden~e . ’~ ,~~ A limit for convergence was also 
found at  Ws, = 5. 

The combined effect of inertia and viscoelasticity (Re # 0, Ws # 0) was 
found to be such that at  moderate Re and Ws numbers there is a vortex 
growth regime, accompanied by a divergent flow regime and substantial 
reduction in the vortex size as Re and Ws increase. These findings are in 
qualitative agreement with experimental evidence available in the 1iterat~re.l~ 
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